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Abstract. From a proper 2×2 discrete isospectral problem, a new integrable lattice soliton system
is proposed. Integrable discretizations of a general Toda-type lattice soliton equation associated
with the discrete isospectral problem are established. The Lagrangian and Newtonian forms of
integrable discretizations of Toda-type lattice equations which occur in the literature are given
uniformly and some new integrable discretizations of the Toda-type lattice are obtained.

1. Introduction

The study of the lattice soliton equations has received considerable attention in recent years.
Many lattice soliton equations have been proposed, such as the Ablowitz–Ladik lattice [1–3],
the Toda lattice [4, 5], the Lotka–Volterra lattice [6, 7], the Bogoyavlensky lattice [8, 9], the
Belov–Chaltikian lattice [10], the differential-difference KdV equation [11], the Suris lattices
[12–14] and so on. Given a discrete spectral problem and its continuous-time evolution problem

Eψn = Un(u, λ)ψn dψn
dt
= Nn(u, λ)ψn (1.1)

whereUn andNn are two proper matrices,E is a shift operator defined by

Efn := fn+1 n ∈ Z.
ψn := ψ(n, t, λ), u := u(n, t) = (u1(n, t), . . . , us(n, t))

T is a potential function, andλ is
a spectral parameter, the compatibility condition of (1.1) isEdψn/dt = dEψn/dt , i.e. the
following discrete zero curvature equation:

Un,t +
∂Un

∂λ

dλ

dt
− (ENn)Un +UnNn = 0 (1.2)

where dλ/dt = aλwith a = 0 for isospectral problem ora = 1 for the nonisospectral problem.
The lattice equation derived from equation (1.2) is integrable in the Lax sense. Recently, we
[15] considered a discrete spectral problem

ψn+1 = Un(u, λ)ψn Un(u, λ) =
(
λpn − λ−1 qn

rn λsn

)
. (1.3)

By setting the continuous-time evolution equation

dψn
dt
= Nnψn Nn =

(
an +µλ−2 λ−1bn

λ−1cn dn

)
(1.4)
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where

an = −µqnrn−1− an + b bn = −µqn cn = −µrn−1 dn = f (pn, qn, rn, sn)
with µ andb arbitrary constants andf an arbitrary function, new integrable lattice systems
were given. For the isospectral problem (1.3), supposesn = δ, qnrn = βpn − δ with β andδ
arbitrary constants, and setdn = 0, we obtain a lattice system from equation (1.2),

ṗn = −µpn
(
qn+1(βpn − δ)

qn
− qn(βpn−1− δ)

qn−1

)
q̇n = qn(µpn + b)− βµqn+1pn.

(1.5)

Setpn → eεpn , qn → eqn , with ε an arbitrary constant, equation (1.5) could be written in the
form

ṗn = µ

ε
(δDeqn−qn−1 − βDeqn−qn−1+εpn−1)

q̇n = µeεpn(1− βeqn+1−qn) + b
(1.6)

which is a general Toda-type lattice soliton equation, whereD is the difference operator defined
byDfn = fn+1− fn. Many famous lattice equations can be derived from equation (1.6) with
the proper choice of parameters, as shown in table 1.

Table 1. Special Toda-type lattice soliton equations.

Parameters Lattice equations in the Newtonian form

ε = µ = δ = 1, b = β = 0 (1) q̈n = q̇n(eqn+1−qn − eqn−qn−1)

ε = µ = 1, β = −g2, b = δ = 0 (2) q̈n = q̇n+1q̇n
g2eqn+1−qn

1 +g2eqn+1−qn − q̇nq̇n−1
g2eqn−qn−1

1 +g2eqn−qn−1

ε = µ = 1, β = −g2, δ→ δg2, b = 0 (3) q̈n = q̇nq̇n+1
g2eqn+1−qn

1 +g2eqn+1−qn − q̇n−1q̇n
g2eqn−qn−1

1 +g2eqn−qn−1

+δg2q̇n(eqn+1−qn − eqn−qn−1)

µ = −b = ε−1, δ = ε2, β = 0 (4) q̈n = (1 + εq̇n)(eqn+1−qn − eqn−qn−1)

µ = −b = ε−1, δ = 0, β = −ε2 (5) q̈n = (1 + εq̇n)(1 + εq̇n+1)
eqn+1−qn

1 + ε2eqn+1−qn

−(1 + εq̇n−1)(1 + εq̇n)
eqn−qn−1

1 + ε2eqn−qn−1

µ = −b = ε−1, δ = β = −ε (6) q̈n = (1 + εq̇n)

(
q̇n+1− eqn+1−qn

1 + εeqn+1−qn eqn+1−qn

− q̇n−1 − eqn−qn−1

1 + εeqn−qn−1
eqn−qn−1

)

Equations (1)–(6) are obtained, respectively, in [13–20]. Though there exist
transformations that turn equation (4) into equation (1), equation (5) into equation (2), and
equation (6) into equation (3), there are some essential differences among equations (1)–(6).
Indeed, equations (4) and (5) reduce to the famous Toda lattice when takingε → 0. Let
ε → 0, equation (6) becomes the lattice discussed in [12]

q̈n = q̇n+1e
qn+1−qn − e2(qn+1−qn) − q̇n−1eqn−qn−1 + e2(qn−qn−1). (1.7)

In this paper, we first give a new integrable lattice soliton system associated with the isospectral
problem (1.3) by setting a proper continuous-time evolution equation, then we focus on the
integrable discretization of the general Toda-type lattice equation (1.6). As an application,
the Lagrangian and Newtonian forms of integrable discretizations of the Toda-type lattice
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equations (1)–(6) are given uniformly and some new integrable discretizations of lattice
equations (1)–(6) are obtained. Finally, the integrable discretization of the integrable lattice
system posed in section 2 is discussed.

2. A new integrable lattice soliton system

For the isospectral problem (1.3), we can obtain a novel integrable lattice soliton system by
setting the following continuous-time evolution equation:

dψn
dt
= Nnψn Nn = 1

1 +λ2

(
λ2an λbn

λcn
1
2(dn + λ2en)

)
(2.1)

wherean, bn, cn, dn anden are determined functions of the potentialsu = (pn, qn, rn, sn)
T .

From equations (1.3) and (2.1), we obtain

Nn+1Un − UnNn =
(
111 112

121 122

)
(2.2)

where

111 = λpnDan − λ

1 +λ2
((pn + 1)Dan − rnbn+1 + qncn)

112 = qnan+1 + snbn+1− pnbn
− 1

2qnen −
1

1 +λ2
(qnan+1 + snbn+1− pnbn − bn + 1

2qn(dn − en))
121 = pncn+1− rnan − sncn + 1

2rnen+1

+
1

1 +λ2
(rnan + sncn − pncn+1− cn+1 + 1

2rn(dn+1− en+1))

122 = 1
2λsnDen +

λ

1 +λ2
(qncn+1− rnbn + 1

2sn(en − dn) + 1
2sn(dn+1− en+1)).

(2.3)

In order to obtain an integrable lattice system, the following equations must be satisfied:

(pn + 1)Dan − rnbn+1 + qncn = 0

qnan+1 + snbn+1− pnbn − bn + 1
2qn(dn − en) = 0

rnan + sncn − pncn+1− cn+1 + 1
2rn(dn+1− en+1) = 0

qncn+1− rnbn + 1
2sn(en − dn) + 1

2sn(dn+1− en+1) = 0.

(2.4)

The solvability of equation (2.4) is crucial. Fortunately we can find a solution to equation (2.4)
under the assumptionqnrn = −(pn + 1)sn anden = −dn,

an = pn + 1

1n

bn = qn

1n

cn = − (pn + 1)sn−1

qn−11n

dn = − qnsn−1

qn−11n

(2.5)

where1n = 1 + pn + (qnsn−1/qn−1). We thus obtain the following lattice system from
equation (1.2):

ṗn = pnDan
q̇n = qnan+1 + snbn+1− pnbn + 1

2qndn

ṙn = pncn+1− rnan − sncn − 1
2rndn+1

ṡn = − 1
2snDdn.
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It is easy to show that the consistent conditionṗnsn + (pn + 1)ṡn = −(q̇nrn + qnṙn) is satisfied.
Therefore, we obtain a new integrable lattice system,

ṗn = pn
(

1 +pn+1

1 +pn+1 + qn+1sn/qn
− 1 +pn

1 +pn + qnsn−1/qn−1

)
q̇n = qn

(
1 +qnsn−1/2qn−1

1 +pn + qnsn−1/qn−1

)
ṡn = sn

2

(
qn+1sn/qn

1 +pn+1 + qn+1sn/qn
− qnsn−1/qn−1

1 +pn + qnsn−1/qn−1

)
.

(2.6)

Under the transformationpn → epn, qn → eqn , sn → esn , the lattice system (2.6) can be
written in the form

ṗn = 1 + epn+1

1 + epn+1 + eqn+1−qn+sn −
1 + epn

1 + epn + eqn−qn−1+sn−1

q̇n =
1 + 1

2eqn+sn−1−qn−1

1 + epn + eqn−qn−1+sn−1

ṡn = 1

2

(
eqn+1−qn+sn

1 + epn+1 + eqn+1−qn+sn −
eqn−qn−1+sn−1

1 + epn + eqn−qn−1+sn−1

)
.

(2.7)

Example. We consider a reductionsn = β = constant,qnrn = −β(pn + 1). In this case, there
exists a solution to equation (2.4),

an = pn + 1

1
bn = qn

1
cn = −β(pn + 1)

qn−11

dn = − 2βqn
qn−11

+ 2α(t) en = 2α(t)
(2.8)

with α(t) an arbitrary function and1 = 1 +pn + βqn/qn−1. It follows from equations (2.3),
(2.8) and (1.2) that

ṗn = pnDan
q̇n = qnan+1 + βbn+1− pnbn − α(t)qn
ṙn = pncn+1− rnan − βcn + α(t)rn.

It can be shown that the consistent condition−βṗn = q̇nrn + qnṙn holds identically. We thus
obtain the lattice equation

ṗn = pn
(

1 +pn+1

1 +pn+1 + βqn+1/qn
− 1 +pn

1 +pn + βqn/qn−1

)
q̇n = qn

(
1 +βqn/qn−1

1 +pn + βqn/qn−1
− α(t)

)
.

(2.9)

Under the transformationpn→ epn, qn→ eqn−
∫ t
α(t) dt , equation (2.9) is reduced to the form

ṗn = −βeqn+1−qn

1 + epn+1 + βeqn+1−qn +
βeqn−qn−1

1 + epn + βeqn−qn−1

q̇n = 1 +βeqn−qn−1

1 + epn + βeqn−qn−1

(2.10)

i.e.

q̈n = β2e2qn−2qn−1

(1 +βeqn−qn−1)2
q̇2
n(q̇n−1− q̇n) + (q̇n − 1)

(
βeqn−qn−1

1 +βeqn−qn−1
q̇2
n −

βeqn+1−qn

1 +βeqn+1−qn q̇nq̇n+1

)
.
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Equation (2.10) possesses the Hamiltonian structure

ṗn = −∂H
∂qn

q̇n = ∂H

∂pn
(2.11)

where the Hamiltonian functionH = ∑
n pn −

∑
n log(1 + epn + βeqn−qn−1). Two

lattice equations (10.11) and (11.14) obtained by Suris in [20] are equivalent to the lattice
equation (2.10) essentially. So, they are only special reductions of equation (2.7).

3. Integrable discretizations of the general Toda-type lattice equation (1.6)

In this section, we establish the integrable discretizations of the general Toda-type lattice
equation (1.5) or (1.6). As an application, the Lagrangian and Newtonian forms of integrable
discretizations of lattice equations (1)–(6) are given uniformly and some new integrable
discretizations of lattice equations (1)–(6) are obtained. Given an integrable lattice soliton
equation, one would like to construct its integrable discretization. Some examples show
that the Lax matrix of the discrete-time approximation coincides with the Lax matrix of the
continuous-time system [2, 21–24]. In the difference equations below, we supposepn = pn(t)
is a function of the discrete timet ∈ hZ, andp̃n = pn(t +h), p

˜n
= pn(t − h). From Taha and

Ablowitz’s idea [21], given a proper discrete spectral problem and its discrete-time evolution
problem

Eψn = Unψn ψ̃n = Vnψn (3.1)

the compatibility of equation (3.1) implies the following discrete zero-curvature equation:

ŨnVn = Vn+1Un (3.2)

with the same matrixUn as the underlying continuous time spectral problem. If a difference
equation derived from equation (3.2) by the proper choice ofVn is a discrete-time approximation
of the original continuous-time equation, then the difference equation is called the integrable
discretization of the original continuous-time equation. How do we choose a properVn? Note
that

ψ̃n − ψn
h

= (Vn − I )ψn
h

whereI is the unit matrix, we obtain

lim
h→0

Vn − I
h
= Nn. (3.3)

It is obvious that equation (3.3) is only a necessary condition in order to obtain integrable
discretization. Now let us consider problem (3.1) with

Un =
(
λpn − λ−1 qn

rn λδ

)
Vn =

(
an + αλ−2 λ−1bn

λ−1cn dn

)
(3.4)

whereqnrn = βpn − δ, β, δ andα are arbitrary constants,an, bn, cn, dn are determined. It
follows from equation (3.2) that

ŨnVn − Vn+1Un =
(
111 112

121 122

)
=
(

0 0
0 0

)
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where

111 = λ(anp̃n − an+1pn) + λ−1(Dan + α(p̃n − pn) + cnq̃n − bn+1rn)

112 = bnp̃n + dnq̃n − an+1qn − δbn+1− λ−2(bn + αqn)

121 = λ−2(αr̃n + cn+1) + r̃nan + δcn − pncn+1− rndn+1

122 = −λδDdn + λ−1(bnr̃n − qncn+1).

We thus obtain that

dn = 1 bn = −αqn cn = −αr̃n−1 (3.5)

and the following equations:

anp̃n = an+1pn (3.6)

Dan + α(p̃n − pn) + cnq̃n − bn+1rn = 0 (3.7)

bnp̃n + q̃n − an+1qn − δbn+1 = 0 (3.8)

r̃nan + δcn − pncn+1− rn = 0. (3.9)

It follows from equations (3.5)–(3.8) that

an+1 = δα qn+1

qn
+
q̃n

qn
− αp̃n cn = −Dan

q̃n
+ α

pn − p̃n
q̃n

− αqn+1rn

q̃n
. (3.10)

Substituting equations (3.5), (3.6) and (3.10) into equation (3.9) and notingqnrn = βpn − δ,
we find that equation (3.9) is satisfied identically. Therefore, if we choose properan, such
that the map derived from equations (3.8) and (3.6) is the discrete-time approximation of
equation (1.5), and equation (3.7) holds identically, then the map is an integrable discretization
of lattice (1.5). From equation (3.3), we setα = µh and

an+1 = 1 +bh− µh(βp̃n − δ)qn+1

q̃n
+ on+1(h) (3.11)

whereon+1(h)/h→ 0, ash→ 0. It follows from equations (3.8), (3.6) and (3.11) that

q̃n − qn
h

= µqnp̃n − µδqn+1 + qn

(
b − µ(βp̃n − δ)qn+1

q̃n
+
on+1(h)

h

)
(3.12)

p̃n − pn
h

= µ(βp̃n−1− δ)qnp̃n
q̃n−1

− µ(βp̃n − δ)qn+1pn

q̃n

+pn

(
b +

on+1(h)

h

)
− p̃n

(
b +

on(h)

h

)
. (3.13)

The map (3.12), (3.13) is a discrete-time approximation of the lattice (1.5). Here, the
introduction of the modified termon+1(h) is important in order to derive an integrable
discretization of the lattice (1.5). Then, how do we chooseon+1(h)? After some analysis,
we let

on+1(h) = −bµh2(βp̃n − δ)qn+1

q̃n
(3.14)

and write the map (3.12), (3.13) in the following form:

hp̃n = (q̃n/qn − bh− 1)(1 + δµh(qn+1/q̃n))

µ(1− (bh + 1)β(qn+1/q̃n))

hpn = (q̃n/qn − bh− 1)(1 + δµh(qn/q̃n−1))

µ(1− (bh + 1)β(qn/q̃n−1))

1− β(qn/qn−1)

1− β(qn+1/qn)
.

(3.15)
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Now we show that equation (3.7), i.e. the following equation,(
1− (bh + 1)β

qn+1

q̃n

)
hp̃n −

(
1− β qn+1

qn

)
hpn − βhp̃n−1

(
q̃n

q̃n−1
− (bh + 1)

qn

q̃n−1

)
+δh

(
q̃n

q̃n−1
− qn+1

qn

)
+ δh(1 +bh)

(
qn+1

q̃n
− qn

q̃n−1

)
= 0 (3.16)

holds identically. Substituting equation (3.15) into equation (3.16), after some calculations,
we obtain(

1− (bh + 1)β
qn+1

q̃n

)
hp̃n −

(
1− β qn+1

qn

)
hpn − βhp̃n−1

(
q̃n

q̃n−1
− (bh + 1)

qn

q̃n−1

)
= δh

(
qn+1

qn
− q̃n

q̃n−1

)
− δh(1 +bh)

(
qn+1

q̃n
− qn

q̃n−1

)
.

Equation (3.7) thus holds identically. So, the map (3.15) is an integrable discretization of
lattice (1.5). Under the transformationpn → eεpn , qn → eqn , the map (3.15) possesses the
beautiful Lagrangian and Newtonian forms, respectively,

h eεp̃n = (eq̃n−qn − bh− 1)(1 + δµh eqn+1−q̃n )
µ(1− (bh + 1)βeqn+1−q̃n )

h eεpn = (eq̃n−qn − bh− 1)(1 + δµh eqn−q̃n−1)

µ(1− (bh + 1)βeqn−q̃n−1)

1− βeqn−qn−1

1− βeqn+1−qn

(3.17)

and

(eqn−q˜
n − bh− 1)(1 + δµh eq˜ n+1−qn)
1− (bh + 1)βeq˜ n+1−qn = (eq̃n−qn − bh− 1)(1 + δµh eqn−q̃n−1)

1− (bh + 1)βeqn−q̃n−1

1− βeqn−qn−1

1− βeqn+1−qn .

(3.18)

Example. From the integrable discretization (3.17), (3.18) of the general Toda-type lattice
(1.6), integrable discretizations of the lattice equations (1)–(6) are given uniformly as follows
in the Lagrangian and Newtonian forms:

h eεp̃n = (eq̃n−qn − 1)(1 +h eqn+1−q̃n )

h eεpn = (eq̃n−qn − 1)(1 +h eqn−q̃n−1)
(3.19)

eqn−q˜
n − 1

eq̃n−qn − 1
= 1 +h eqn−q̃n−1

1 +h eq˜ n+1−qn (3.20)

which coincide with integrable discretization for the modified Toda lattice equation (1) obtained
in [14].

h ep̃n = eq̃n−qn − 1

1 +g2eqn+1−q̃n

h epn = eq̃n−qn − 1

1 +g2eqn−q̃n−1

1 +g2eqn−qn−1

1 +g2eqn+1−qn

(3.21)

eqn−q˜
n − 1

eq̃n−qn − 1
= 1 +g2eq˜ n+1−qn

1 +g2eqn−q̃n−1

1 +g2eqn−qn−1

1 +g2eqn+1−qn (3.22)
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which coincide with integrable discretization for the relativistic Toda lattice (2) obtained in
[24].

h ep̃n = eq̃n−qn − 1

1 +g2eqn+1−q̃n (1 + δg2h eqn+1−q̃n )

h epn = eq̃n−qn − 1

1 +g2eqn−q̃n−1

1 +g2eqn−qn−1

1 +g2eqn+1−qn (1 + δg2h eqn−q̃n−1)

(3.23)

eqn−q˜
n − 1

eq̃n−qn − 1
= 1 +g2eq˜ n+1−qn

1 +g2eqn−q̃n−1

1 +g2eqn−qn−1

1 +g2eqn+1−qn
1 + δg2h eqn−q̃n−1

1 + δg2h eq˜ n+1−qn (3.24)

which are just results for equation (3) obtained in [20]. Equations (3.23) and (3.24) reduce to
equations (3.21) and (3.22) if we letδ = 0.

h eεp̃n = ε
(

eq̃n−qn +
h

ε
− 1

)
(1 + εh eqn+1−q̃n )

h eεpn = ε
(

eq̃n−qn +
h

ε
− 1

)
(1 + εh eqn−q̃n−1)

(3.25)

ε(eqn−q˜
n − 1) + h

ε(eq̃n−qn − 1) + h
= 1 + εh eqn−q̃n−1

1 + εh eq˜ n+1−qn (3.26)

which coincide with the results for equation (4) obtained in [13]. Ifε = h, equations (3.25)
and (3.26) reduce to

ehp̃n = eq̃n−qn(1 +h2eqn+1−q̃n )

ehpn = eq̃n−qn(1 +h2eqn−q̃n−1)
(3.27)

eq̃n−2qn+q
˜
n = 1 +h2eq˜ n+1−qn

1 +h2eqn−q̃n−1
(3.28)

which are just the Lagrangian and Newtonian forms of the integrable discretization of the Toda
lattice.

h eεp̃n = εeq̃n−qn + h− ε
1 + (ε2 − εh)eqn+1−q̃n

h eεpn = εeq̃n−qn + h− ε
1 + (ε2 − εh)eqn−q̃n−1

1 + ε2eqn−qn−1

1 + ε2eqn+1−qn

(3.29)

εeqn−q˜
n + h− ε

εeq̃n−qn + h− ε =
1 + (ε2 − εh)eq˜ n+1−qn

1 + (ε2 − εh)eqn−q̃n−1

1 + ε2eqn−qn−1

1 + ε2eqn+1−qn (3.30)

which are integrable discretizations for equation (5). Ifε = h, equations (3.29) and (3.30)
reduce to

ehp̃n = eq̃n−qn

ehpn = eq̃n−qn + h2eq̃n−qn−1

1 +h2eqn+1−qn

(3.31)

e2qn−q
˜
n−q̃n = 1 +h2eqn−qn−1

1 +h2eqn+1−qn (3.32)
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which are new Lagrangian and Newtonian forms of the integrable discretization of the Toda
lattice.

h eεp̃n = (εeq̃n−qn + h− ε)(1− h eqn+1−q̃n )
1 + (ε − h)eqn+1−q̃n

h eεpn = (εeq̃n−qn + h− ε)(1− h eqn−q̃n−1)(1 + εeqn−qn−1)

(1 + (ε − h)eqn−q̃n−1)(1 + εeqn+1−qn)

(3.33)

(εeqn−q˜
n + h− ε)(1− h eq˜ n+1−qn)
1 + (ε − h)eq˜ n+1−qn = (εeq̃n−qn + h− ε)(1− h eqn−q̃n−1)(1 + εeqn−qn−1)

(1 + (ε − h)eqn−q̃n−1)(1 + εeqn+1−qn)
(3.34)

which are integrable discretizations for equation (6). Ifε = h, equations (3.33) and (3.34)
reduce to

ehp̃n = eq̃n−qn(1− h eqn+1−q̃n )

ehpn = eq̃n−qn(1− h eqn−q̃n−1)
1 +heqn−qn−1

1 +heqn+1−qn
(3.35)

e2qn−q
˜
n−q̃n = (1− h eqn−q̃n−1)(1 +heqn−qn−1)

(1− h eq˜ n+1−qn)(1 +heqn+1−qn)
(3.36)

which coincide with the Lagrangian and Newtonian forms of integrable discretization of lattice
equation (1.7) obtained in [13]. A question arises: isan+1 presented by equations (3.11) and
(3.14) unique? The answer is negative. Suppose

an+1 = 1 +h(b + γ h)− µh(1 +bh + γ h2)(βp̃n − δ)qn+1

q̃n
(3.37)

whereγ is an arbitrary constant. It is obvious that the map derived from equations (3.8) and
(3.6) with equation (3.37) is a discrete-time approximation of the lattice equation (1.5). It
follows from equations (3.8), (3.6) and (3.37) that

hp̃n = (q̃n/qn − 1− bh− γ h2)(1 + δµh(qn+1/q̃n))

µ(1− (1 +bh + γ h2)β(qn+1/q̃n))

hpn = (q̃n/qn − 1− bh− γ h2)(1 + δµh(qn/q̃n−1))

µ(1− (1 +bh + γ h2)β(qn/q̃n−1))

1− β(qn/qn−1)

1− β(qn+1/qn)

(3.38)

which is another discrete-time approximation of lattice (1.5). Now we show that equation (3.7),
i.e. the following equation,(

1− (1 +bh + γ h2)β
qn+1

q̃n

)
hp̃n −

(
1− β qn+1

qn

)
hpn + βh(1 +bh + γ h2)

p̃n−1qn

q̃n−1

−βhp̃n−1q̃n

q̃n−1
+ δh

(
q̃n

q̃n−1
− qn+1

qn

)
+ δh(1 +bh + γ h2)

(
qn+1

q̃n
− qn

q̃n−1

)
= 0

(3.39)

is satisfied. Substituting equation (3.38) into equation (3.39), after some calculations, we know
that equation (3.7) holds identically. So, the map (3.38) is also an integrable discretization
of lattice (1.5). Under transformationpn → eεpn , qn → eqn , the map (3.38) possesses the
beautiful Lagrangian and Newtonian forms, respectively,

h eεp̃n = (eq̃n−qn − 1− bh− γ h2)(1 + δµh eqn+1−q̃n )
µ(1− (1 +bh + γ h2)βeqn+1−q̃n )

h eεpn = (eq̃n−qn − 1− bh− γ h2)(1 + δµh eqn−q̃n−1)

µ(1− (1 +bh + γ h2)βeqn−q̃n−1)

1− βeqn−qn−1

1− βeqn+1−qn

(3.40)
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and

(eqn−q˜
n − 1− bh− γ h2)(1 + δµh eq˜ n+1−qn)
1− (1 +bh + γ h2)βeq˜ n+1−qn

= (eq̃n−qn − 1− bh− γ h2)(1 + δµh eqn−q̃n−1)

1− (1 +bh + γ h2)βeqn−q̃n−1

1− βeqn−qn−1

1− βeqn+1−qn . (3.41)

From the map (3.40)–(3.41), new integrable discretizations of lattice equation (1)–(6) are
obtained.

4. Conclusion and discussion

We have proposed a novel integrable lattice system associated with the discrete isospectral
problem (1.3). Integrable discretizations of the general Toda-type lattice equation (1.5) or
(1.6) are established and the Lagrangian and Newtonian forms of integrable discretizations of
Toda-type lattices (1)–(6) are derived uniformly and some new integrable discretizations of
lattices (1)–(6) are given. We ask the question of how to obtain an integrable discretization of
the lattice system (2.6)? Is the method posed in section 3 applicable to lattice system (2.6)?
Following the method above, by condition (3.3), we consider problem (3.1) with

Un =
(
λpn − λ−1 qn

rn λsn

)
Vn = 1

1 +λ2

(
1 +λ2 + λ2fn λun

λvn 1 +λ2 + 1
2(wn + λ2gn)

) (4.1)

whereqnrn = −(pn + 1)sn, functionsfn, gn, un, vn andwn are determined. It follows from
the discrete zero curvature equation (3.2) that

un = 1
2wnq̃n + q̃n − qn (4.2)

vn+1 = 1
2wn+1rn + rn − r̃n (4.3)

(fn + 1)p̃n = (fn+1 + 1)pn (4.4)

unp̃n + ( 1
2gn + 1)q̃n = (fn+1 + 1)qn + un+1sn (4.5)

( 1
2gn + 1)s̃n = ( 1

2gn+1 + 1)sn (4.6)

Dfn + p̃n − pn + vnq̃n − un+1rn = 0 (4.7)

(fn + 1)r̃n + vns̃n − vn+1pn − ( 1
2gn+1 + 1)rn = 0 (4.8)

unr̃n + ( 1
2wn + 1)s̃n − vn+1qn − ( 1

2wn+1 + 1)sn = 0. (4.9)

From condition (3.3), we let

wn = hdn + o1,n(h) gn = −wn o1,n(h)

h
→ 0 (h→ 0) (4.10)

wheredn is presented by equation (2.5). Then,

wn

h
→ dn

gn

h
→ en (h→ 0).

Note that with the equations foṙqn andṙn, we can prove

un

h
→ bn

vn

h
→ cn (h→ 0)
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wherebn andcn are presented by equation (2.5). Let

fn = han + o2,n(h)
o2,n(h)

h
→ 0 (h→ 0). (4.11)

From (4.4)–(4.6) it follows that

p̃n − pn
h

=
(

1 +pn+1

1n+1

)
pn −

(
1 +pn
1n

)
p̃n +

o2,n+1(h)pn − o2,n(h)p̃n

h
(4.12)

q̃n − qn
h

=
(

1 +pn+1

1n+1

)
qn − qnsn−1q̃n

2qn−11n

+
un+1sn − unp̃n

h
+
o2,n+1(h)qn

h
+
o1,n(h)q̃n

2h
(4.13)

s̃n − sn
h
= qn+1s

2
n

2qn1n+1
− qnsn−1s̃n

2qn−11n

− o1,n+1(h)sn − o1,n(h)s̃n

2h
. (4.14)

The map (4.12)–(4.14) is a discrete-time approximation of the lattice system (2.6). In order to
obtain the integrable discretization of the lattice system (2.6), we must choose proper modified
termso1,n(h) ando2,n(h) such that equations (4.7)–(4.9) hold identically. However, we failed
in finding propero1,n(h) ando2,n(h). Recently, by the singularity confinement method [25–
27], the bilinear form of the discrete-time relativistic Toda lattice equations was established and
theN -soliton solution was constructed explicitly by Marunoet al in the form of the Casorati
determinant [28]. So we believe that the search for the bilinear forms andN -soliton solutions
for the discrete-time general Toda-type lattice and integrable discretization of the lattice system
(2.6) are worth further future effort.
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