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Abstract. Fromaproper X 2 discrete isospectral problem, a new integrable lattice soliton system

is proposed. Integrable discretizations of a general Toda-type lattice soliton equation associated
with the discrete isospectral problem are established. The Lagrangian and Newtonian forms of
integrable discretizations of Toda-type lattice equations which occur in the literature are given
uniformly and some new integrable discretizations of the Toda-type lattice are obtained.

1. Introduction

The study of the lattice soliton equations has received considerable attention in recent years.
Many lattice soliton equations have been proposed, such as the Ablowitz—Ladik lattice [1-3],
the Toda lattice [4, 5], the Lotka—\Volterra lattice [6, 7], the Bogoyavlensky lattice [8, 9], the
Belov—Chaltikian lattice [10], the differential-difference KdV equation [11], the Suris lattices
[12-14]and soon. Given adiscrete spectral problem and its continuous-time evolution problem
dyr

Ewn = Un(l/t, )L)wn d_wtl = Nn(uv )»)an (ll)

whereU, andN, are two proper matriced; is a shift operator defined by

Efy = fuu nez.

Y, =Y, t,A), u =um,t) = (ui(n,t),...,us(n, )7 is a potential function, and is
a spectral parameter, the compatibility condition of (1.1E/,/dt = dE,/dt, i.e. the
following discrete zero curvature equation:

U, di
+ o dr (EN,)U,+U,N,, =0 1.2)
where d./dr = aA witha = 0 for isospectral problem ar= 1 for the nonisospectral problem.
The lattice equation derived from equation (1.2) is integrable in the Lax sense. Recently, we
[15] considered a discrete spectral problem

Un.i

Apn — 271 g,
Yot = Un @ DY Unu, 1) = ( r I ) (1.3)
T AS,
By setting the continuous-time evolution equation
dy, a, + ur=2 A7 1p,
dl —_ ann Nn - < )\,_16‘" dn (14)
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where

ap = —[{gutp—1 —an+ b b, = —HKqn Cpn = —UFp-1 d, = f(an qn>Tn, Sn)

with u andb arbitrary constants and an arbitrary function, new integrable lattice systems
were given. For the isospectral problem (1.3), suppgse 8, ¢g,r, = Bp, — § with 8 andé
arbitrary constants, and sét = 0, we obtain a lattice system from equation (1.2),

- <Qn+1(ﬂpn - 8) qn (ﬂpnfl - 8))

Pn = —HUPn -
qn qn-1

Gn = Gn(Upn +b) — BUGn+1Pn-

(1.5)

Setp, — e, g, — €, with € an arbitrary constant, equation (1.5) could be written in the
form

Pn = g((SDeQn*qnfl _ ﬁDe‘]nfqn—l"'éPn—l) (L6)
o = &P (1~ el o) + b

which is ageneral Toda-type lattice soliton equation, wiikigthe difference operator defined
by Df, = f.+1 — f». Many famous lattice equations can be derived from equation (1.6) with
the proper choice of parameters, as shown in table 1.

Table 1. Special Toda-type lattice soliton equations.

Parameters Lattice equations in the Newtonian form
e=u=§8=1 b=p=0 1) Gn = G (€An+17n — gn—dn-1)
2eln+1—4n 2eln—dn-1
e=pn=1 =-g% b=46=0 (2 qn = %+l‘1nm - %‘In—lm
2elin+1—4qn 29‘—1/1*%—1
o _ 2 2 . L ged P
e=p=1 p=-¢% 58 b=0 Q) =iy g Py e (S LUl wpe ey
+8g2¢, (en+1=dn — glin—dn-1)
p=-b=ect s=€, =0 (4) o= (L+egy) (g1t — gin—in-1)
1 2 . i . @In+1=4n
u=-b=e¢1 8§=0 Pp=—¢ (5) qn=(1+€%)(1+64n+1)m
. . ein—4dn-1
—(1+egn-1(1 +€(1n)m
0 — 1 — —_ S — ; ('1n+1 — eﬂn‘*l_q” n+1—qn
p=-b=e" s=Bp=—c (6) qn—(1+€qn)< T+cami—in ©
_ Gn-1 — €It gfn—dn-1
1 +eein—dn-1

Equations (1)—(6) are obtained, respectively, in [13-20]. Though there exist
transformations that turn equation (4) into equation (1), equation (5) into equation (2), and
equation (6) into equation (3), there are some essential differences among equations (1)—(6).
Indeed, equations (4) and (5) reduce to the famous Toda lattice when taking0. Let
€ — 0, equation (6) becomes the lattice discussed in [12]

in = (g €110 — 1= _ €71 + e —4n-1) 1.7
q q q

In this paper, we first give a new integrable lattice soliton system associated with the isospectral
problem (1.3) by setting a proper continuous-time evolution equation, then we focus on the
integrable discretization of the general Toda-type lattice equation (1.6). As an application,
the Lagrangian and Newtonian forms of integrable discretizations of the Toda-type lattice
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equations (1)—(6) are given uniformly and some new integrable discretizations of lattice
equations (1)—(6) are obtained. Finally, the integrable discretization of the integrable lattice
system posed in section 2 is discussed.

2. A new integrable lattice soliton system

For the isospectral problem (1.3), we can obtain a novel integrable lattice soliton system by
setting the following continuous-time evolution equation:

dy, 1 2a, b,
= N, N, =—— 2.1
dr v 1+A2 ( Ac,  3(dy +2%e,) > (2.1)

wherea,, b,, c,, d, ande, are determined functions of the potentials= (p,, gn, ', 5,)7 .
From equations (1.3) and (2.1), we obtain

An Agp
Nn Un - UnNn = 2.2
* ( Az A ) (2:2)

where

A1t = 2puDay — 1 (P + DDay — rabye +,cy)
A12 = gnay+1 + Spbpr1 — prby

T352 @nans1 ¥ Subuss = Pubn = bu + 505 (dy — €0) s
D21 = PuCut1 — Fnln — SuCn + 3rnns1 (@3)

1
—54n€n —

1
+m(rnan + SnCp — PnCn+1 — Cp+l + irn(dn+1 - en+1))

A22 == %)\snDen + (qncn+1 - rnbn + %Sn(en - dn) + %Sn(dml - €n+1)).

A
1+22
In order to obtain an integrable lattice system, the following equations must be satisfied:

(pn + 1)DCZ,1 - rnbn+1 +qnc, = 0
qnap+1 t Snbn+l - pnbn - bn + %qn (dn - en) =0
! (2.4)
TnGy * SpCp — PnCp+l — Cpe1 + 5'n (dn+l - en+l) =0
qnCn+1 — rnbn + %Sn (en - dn) + %sn (dn+l - en+l) =0.
The solvability of equation (2.4) is crucial. Fortunately we can find a solution to equation (2.4)
under the assumptiap,r, = —(p, + 1)s, ande, = —d,,

pntl n
ay = = by = 22
All AI’l (2 5)
_ (pn + 1)sn—l d = — qnSn—1 '
" qnflAn " qnflAn

whereA, = 1+ p, + (¢.s0—1/¢g.—1). We thus obtain the following lattice system from
equation (1.2):

Pn = puDay,

Gn = Gnn+1+ Subus1 — Puby + 2q,d,

Fn = PnCnt1 — Fnly — SpCn — 3Fndns1

Sp = —%snan.
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Itis easy to show that the consistent conditign,, + (p, + 1)s, = —(g.r» +q,F») IS satisfied.
Therefore, we obtain a new integrable lattice system,

. ( 1+pp1 _ 1+p, )
Pr= P T prt * quasn /@ 1% P+ Gusn1/dn1
C']n =g, < i -::- +qisn—l/2qn—1 ) (26)
Pn ¥ GnSn—1/qn-1
5, = S_n( qn+18n/qn . AnSn—1/qn-1 )
2\1+purr+queasn/gn 1+ putqusu-1/qn-1

Under the transformatiop, — e, q, — €, s, — €, the lattice system (2.6) can be
written in the form

. 1+ @2 1+ ebn
Pr= Tvomvemars ~ Tronten oo

. 1+ leintsn-1—ana

Gn 2 2.7)

T 1+ e + ettt

. l eq'x+1_Qn+Sn equ_Qn—l"'sn—l

Sp = = - .
" 1+ @t + @i—datsn 1+ @Pn + @n—dn-1+8n-1

Example. We consider a reductia) = 8 = constantg,r, = —8(p, +1). Inthis case, there
exists a solution to equation (2.4),

_pntl G _ BlpntD)
=N bn="A N
2]3 qn-1 (28)
dy = —PU L o0ty ey = 2a(t)
%1—1A

with «(¢) an arbitrary function and = 1 + p, + 8¢, /q.—1. It follows from equations (2.3),
(2.8) and (1.2) that

Pn = puDay

qn = Gnan+1+ Bbus1 — ppby — a(t)qn

Tn = PnCntl — Fnln — Bey +a ()1,

It can be shown that the consistent conditiefip, = g,r, + g.r, holds identically. We thus
obtain the lattice equation

].7 _p( 1+pn+1 . 1+pn )
; § 1+ Pn+1t ,361n+1/61n 1+ pnt ,BQn/Qn—l

. 1 ] Gn—
Qn:‘h< P/ —()l(t)>.

(2.9)

1+ put Ban/qn—1
Under the transformatiop, — e, g, — =/ ) dr equation (2.9) is reduced to the form
_ n+1—4qn n—qn-1
pef . B

Pn = 1 + @+l + ﬂel/x+1_qn 1 + e’ + ﬂe]n_‘h—l 2 10
) 1+ Bedn—an-1 ( ! )
In = 1+ e + fet—d-1
i.e.
,32e24n*2£1u—1 )

B 5. . . ﬂeqyﬁqn—l 9 'Beqnﬂ*q” o
I = 1+ pen-any2dn (Gn-1—qn) +(gn — 1) T+ per o ~ T4 pegona 1)
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Equation (2.10) possesses the Hamiltonian structure

9H . 9H
dqn "= o

Py = — (2.11)
where the Hamiltonian functiord = )  p, — ), log(l + & + pei»~9-1).  Two
lattice equations (10.11) and (11.14) obtained by Suris in [20] are equivalent to the lattice
equation (2.10) essentially. So, they are only special reductions of equation (2.7).

3. Integrable discretizations of the general Toda-type lattice equation (1.6)

In this section, we establish the integrable discretizations of the general Toda-type lattice
equation (1.5) or (1.6). As an application, the Lagrangian and Newtonian forms of integrable
discretizations of lattice equations (1)—(6) are given uniformly and some new integrable
discretizations of lattice equations (1)—(6) are obtained. Given an integrable lattice soliton
equation, one would like to construct its integrable discretization. Some examples show
that the Lax matrix of the discrete-time approximation coincides with the Lax matrix of the
continuous-time system [2, 21-24]. In the difference equations below, we suppese, (1)

is a function of the discrete timee hZ, andp, = p,(t +h), Pn = pu(t —h). From Taha and

Ablowitz’s idea [21], given a proper discrete spectral problem and its discrete-time evolution
problem

Ewn =U, wn &n =V, ‘(//n (31)
the compatibility of equation (3.1) implies the following discrete zero-curvature equation:
Un Vi = ViU, (32)

with the same matriX/,, as the underlying continuous time spectral problem. If a difference
equation derived from equation (3.2) by the proper choidé o a discrete-time approximation

of the original continuous-time equation, then the difference equation is called the integrable
discretization of the original continuous-time equation. How do we choose a prppedote

that

wn - wn — (Vn - I)wn

h h
wherel is the unit matrix, we obtain
. Vn - I
lim —— = N,. (3.3)
h—0 h

It is obvious that equation (3.3) is only a necessary condition in order to obtain integrable
discretization. Now let us consider problem (3.1) with

_ APn — At qn _ a, + A2 )L_lbn
Un = < T A8 ) V= < 1, d, (3.4)

whereg,r, = Bp, — 8, B, 8§ anda are arbitrary constants,, b,, c¢,, d, are determined. It
follows from equation (3.2) that

~ (A Ay (00
UnVn - Vn+1Un - < AZl A22 > - ( 00 )
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where
A1 = Manpp — ape1pn) + Ail(Dan +a(pp — pn) + CnGn — bp+ara)
A12 = bnﬁn + dnq~n — Qp+1qn — 8bn+1 - )L_Z(bn + QQn)
Aoy = A72(aFy + Cps1) + Pty +8Cn — PuCpst — Fadpst
A22 = _)\8an + kil(bn;n - ann+1)-
We thus obtain that
dn =1 bn = —oq, Cp = _afn—l (35)

and the following equations:

Gy Pp = Gn+1Pn (36)
Da, + a(ﬁn - pn) + Cnén - bn+lrn =0 (37)
bnﬁn + qn — Ap+1qn — 8bn+l =0 (38)
Foty + 8¢y — ppcus1r — 1y = 0. (3.9
It follows from equations (3.5)—(3.8) that
n ~n ~ D n n ~n n n
an+l=5ag+q_ — 0Dy Chp = — ~a +ap o P —Olq tlr . (310)
qn qn qn qn qn

Substituting equations (3.5), (3.6) and (3.10) into equation (3.9) and ngting= Bp, — é,

we find that equation (3.9) is satisfied identically. Therefore, if we choose ptgpsuch

that the map derived from equations (3.8) and (3.6) is the discrete-time approximation of
equation (1.5), and equation (3.7) holds identically, then the map is an integrable discretization
of lattice (1.5). From equation (3.3), we set= uh and

ansr = 1 +bh — ph (B, — 8) 1L + 0,01(h) (3.11)

n

whereo,+1(h)/h — 0, ash — 0. It follows from equations (3.8), (3.6) and (3.11) that

n— Yn ~ ~ n Op (h)
1 ” & WUGn Pn — 8Gn+1 + Gn (b — w(Bpn — gyt 4 Ot ) (3.12)
qn h
ﬁn — Pn ~ qnﬁn ~ 4qn+1Pn
e = B — 8= = (B — §) o
qn-1 qn
e (B . n(h
+pn<b+0+}1l( )>—pn<b+0i(l )>. (3.13)

The map (3.12), (3.13) is a discrete-time approximation of the lattice (1.5). Here, the
introduction of the modified term,.;(k) is important in order to derive an integrable
discretization of the lattice (1.5). Then, how do we choogg(h)? After some analysis,
we let

Ons1(h) = —buh?(B, — 8) L2t (3.14)

n

and write the map (3.12), (3.13) in the following form:

~ (Gn/qn — bh — DL +81uh(qn+1/Gn))

- (L= (bh + 1)B(qu+1/Gn))

hpy = (Gn/qn = bh = D)L +811(gn/Gn-1) 1 = B(@n/@n-1)
w@— (bh+DB(Gn/Gn-1) 1= B(Gu+1/qn)

hpn

(3.15)




Integrable discretizations for Toda-type lattice soliton equations 4177

Now we show that equation (3.7), i.e. the following equation,

(1 — (bh+ 1)/3q"+1>h13n - (1 - ﬁq””)hpn - ﬂhﬁ“( I pp+ )2 )

qn qn qdn-1 qn-1
+<sh<f1" = q"”) +8h(1 +bh)<q’1” - ) =0 (3.16)
dn-1 qn 4qn qn-1

holds identically. Substituting equation (3.15) into equation (3.16), after some calculations,
we obtain

(1 — (bh + 1)ﬂqf*1>hﬁn - (1 - ﬂq”*l)hpn - ﬂhﬁn_l( A b+ 1) 2 )
qn qn qdn-1 qdn-1

= ah(q”*l _ ) —sh(1 +bh)(q'j*1 _ )
4n qn-1 qn qn-1

Equation (3.7) thus holds identically. So, the map (3.15) is an integrable discretization of
lattice (1.5). Under the transformatign, — €%+, g, — €, the map (3.15) possesses the
beautiful Lagrangian and Newtonian forms, respectively,

(€= — bh — 1)(1 +8uh era—in)

h eéﬁ” = ~
w(l — (bh + 1) Betri—in) a1)
heP — (eqz'iq" — bh — 1)(1 +8/,Lh e‘h*‘?n—l) 1— ﬁequf‘]n—l .
B w(l— (bh + 1)Bedn—dn-1) 1— et
and
(€0 — bh — 1)(1+Suh &) (&0 — bh — 1)(L+5pheh—i—t) 1 — petins
1- (bh + 1),3e‘1n+17q,, - 1— (bh + 1),36%7‘?’1—1 1— IBe‘Inﬂ*Qn .
(3.18)

Example. From the integrable discretization (3.17), (3.18) of the general Toda-type lattice
(1.6), integrable discretizations of the lattice equations (1)—(6) are given uniformly as follows
in the Lagrangian and Newtonian forms:
hePn = (el — 1)(1 +h ehnin)
hePn — (efin—qn —1(1+h eqn_gnfl)
et —1  1+heh i
@n*qn — 1 - 1 +h @4n+1—4n

(3.19)

(3.20)

which coincide with integrable discretization for the modified Toda lattice equation (1) obtained
in [14].

s @h—dn _ 1
hep" :—1+ 281 . q
g n+l=—4n
e et — 1 1+ g2t (321)
1 +gzeq,,—q‘,,_1 1 +g2equ+rqn
eln—qn — 1 1 + o2eim1=dn 1 + g2ln—4n-1
§ g (3.22)

é»x_qn — 1 = 1 +gze]n_én—1 1 +gzeln+1_qn
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which coincide with integrable discretization for the relativistic Toda lattice (2) obtained in
[24].

~ e‘f~n_(lzx — 1 ~
hePr = — =~ (1+8g%h ein)
1+ gZQQn+1—q,,
G- 1 1+ o2t (3.23)
helr = - g (1 +8g2h eq"_q"*l)
1 +g2e¢]n*l]n71 1 +g2eq,,+17qn
en=dn —1  1+g%elm 1+ g2t ] +§g%h et
: g g (3.24)

@i — 1 1+g2eii—ir1 1+ gleimi—n 1 +8g2h elri—ds

which are just results for equation (3) obtained in [20]. Equations (3.23) and (3.24) reduce to
equations (3.21) and (3.22) if we lgt= 0.

heh — e (eqn-% + 2 1) (1 +eh givain)
€ (3.25)

€
€@ 9 —1)+h 1+eheh i
e —1)+h 1+ehelbm—n

) h }
her = ¢ <eqnq~ +o— 1) (1 +eh gt

(3.26)

which coincide with the results for equation (4) obtained in [13]¢ ¥ &, equations (3.25)
and (3.26) reduce to

din — gn—dn (1+ hZeqml*ﬂ?n)

grn — gi—an (1 + p2ehn 1) (3.27)
= 1 + hze‘!’Hl_%t
—2qutq, _ = T TET

¢ "= 1 + h2ein—dn1 (3.28)

which are just the Lagrangian and Newtonian forms of the integrable discretization of the Toda
lattice.

€einn +h — €

h eél;n — > _
+ — n+1—Yqn
1 (E~ €h)eim (3.29)
hehn — ceh=dn +h —¢ 1 +e2einn1
T 1+ (62 — eh)etn—an-1 1 + €2edm1dn
celdn+h—e  1+(e? —eh)eld 1+ (3.30)

eein*q;w + h — € - 1 + (62 — Eh)e]n*‘jn—l 1 +Eze]"+17q”

which are integrable discretizations for equation (5)¢ ¥ £, equations (3.29) and (3.30)
reduce to

ehﬁn — e6117Qn
o eln—dn + }2gin—dn-1 (3.31)
- 1 + h2ein+1—an
. 1 + h2ein—dn1
4= = (3.32)

1+ h2€qn+1*%
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which are new Lagrangian and Newtonian forms of the integrable discretization of the Toda
lattice.

(€= + h — €)(1 — heim=in)

hePn — T e e,
i _ (3.33)
e — T — (L —heh (L +eeh i)
(1 + (e — h)etn—dr1)(1 +eetm—an)
(e +h —€e)(L—hela )  (eeh 0+ ] —e)(1—het D1)(1+eeh )
1+ (e — h)elm—dn - (1+ (e — h)etn—dn-1)(1 + een1—4n)
(3.34)

which are integrable discretizations for equation (6)¢ ¥ h, equations (3.33) and (3.34)
reduce to

g — gin—dn 1—nh eqn+1—l?n)

1 +heh—an (3.35)
1 +heim—dn
(A — h etr=dn-1)(1 + hein—9-1)
(1 — hedri=an)(1 + hetri=an)
which coincide with the Lagrangian and Newtonian forms of integrable discretization of lattice

equation (1.7) obtained in [13]. A question arisesa,is presented by equations (3.11) and
(3.14) unique? The answer is negative. Suppose

ehp/x — eiin —qn (1 _ h e‘l/x_qn—l)

eZLIn 7{{/17@“ —

(3.36)

dn+1

n

wherey is an arbitrary constant. It is obvious that the map derived from equations (3.8) and
(3.6) with equation (3.37) is a discrete-time approximation of the lattice equation (1.5). It
follows from equations (3.8), (3.6) and (3.37) that

_ (Gu/qn — 1= bh — yh®) (L +81h(qn+1/Gn))
B _ nw@— QA +bh+ éhz)ﬂ(‘]nﬂ/én)z (3.38)
hpn — (Qn/‘In —1-bh— Vh )(1 +8Mh(q'1/qnfl)) 1- ﬂ(Qn/anl)
w(L— (L +bh+yh?)B(qn/Gn-1)) 1 - B(Gn+1/qn)
which is another discrete-time approximation of lattice (1.5). Now we show that equation (3.7),
i.e. the following equation,

ane1 =1 +h(b+yh) — ph(L +bh +yh®(Bp, — 6)

(3.37)

hpn

(1 — (L+bh+ yhzye@)hﬁn = (1 - ﬂ@>hpn + Bh(L +bh +yh?) 2t
qn qn qn-1
—pi Lot +6h( I @> +8h(1+bh + yh%(@ - ) =0
qn-1 qn-1 qn qn qn-1
(3.39)

is satisfied. Substituting equation (3.38) into equation (3.39), after some calculations, we know
that equation (3.7) holds identically. So, the map (3.38) is also an integrable discretization
of lattice (1.5). Under transformatiop, — €7+, g, — €, the map (3.38) possesses the
beautiful Lagrangian and Newtonian forms, respectively,

(e84 — 1 — bh — yh?)(1 +8uh ehrin)
p(1 = (1 +bh +yh?)pes=ir)

(€= — 1 —bh — yh?)(1 +8uh e—i-1) 1 — Beir—dn1
nw(l— (L +Dbh +yh?) pen—i-t) 1- petm=a

hehn =

(3.40)
hePn =
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and
(en=9n — 1 — bh — yh?)(1 +§ph elmidn)
1— (1 +bh+yh?) Belmi—a
_ (€= — 1 — bh — yh?)(1 +8uh 1) 1 — Befin—n-1 (3.41)
1— (1 +bh + yh?)pen—i 1— gema—an’ '

From the map (3.40)—(3.41), new integrable discretizations of lattice equation (1)—(6) are
obtained.

4. Conclusion and discussion

We have proposed a novel integrable lattice system associated with the discrete isospectral
problem (1.3). Integrable discretizations of the general Toda-type lattice equation (1.5) or
(1.6) are established and the Lagrangian and Newtonian forms of integrable discretizations of
Toda-type lattices (1)—(6) are derived uniformly and some new integrable discretizations of
lattices (1)—(6) are given. We ask the question of how to obtain an integrable discretization of
the lattice system (2.6)? Is the method posed in section 3 applicable to lattice system (2.6)?
Following the method above, by condition (3.3), we consider problem (3.1) with

U = )‘pn - )‘71 qn
. u ASh

4.1
v 1 1+A2+2%f, Aty 1)
"1+ 20, 1422+ 3 (w, +22g,)
whereg,r, = —(p, + Ds,, functionsf,, g,, u,, v, andw, are determined. It follows from
the discrete zero curvature equation (3.2) that
Up = %wnén +qn —qn (42)
Up+1 = %wn+1rn +r, — ;n (43)
(fn + 1)];n = (fn+l + 1)pn (44)
Uy P+ (%gn +1)Gn = (far1 + Dgn + ups15, (4.5)
(380 + D3, = (381 + s, (4.6)
Dfn + ﬁn — Pn + vnén — Up+1tn = 0 (47)
(fn + 1)fn + Ungn — Un+1Pn — (%grﬁl + 1)rn =0 (48)
unFn + (%wn + 1)€n — Un+1qn — (%wn+l + 1)sn =0. (49)
From condition (3.3), we let
a(h
wy = hd, +01,(h)  gn = —w, Ol*h( ) 50 (>0 (4.10)
whered, is presented by equation (2.5). Then,
%edn gh—"—>en (h — 0).

Note that with the equations fgf, ands,, we can prove

&—>bn ﬁ—>c,, (h — 0)
h h
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whereb, andc, are presented by equation (2.5). Let

o (h
fo=hay+op(h) 22 h( )

—~0 (h— O). (4.11)

From (4.4)—(4.6) it follows that

~n_n 1+n 1+ n o\ ~ n h n nh~n

Pn = Pn _ Pn+1 - 14 5+ 02,0+1(h) pn — 02, (M) p (4.12)
h Apia Ay h

Gn — qn _ 1+pun 0 — qnSn—14n + Up+1Sp — Upn Pn + 02,0+1(N) Gy + 01,,(M)qn (4.13)
h An+1 2q,,,1A,, h h 2h

So=Sn _ quaisy  GuSa-15a Ovavi(R)s, — OLn(M)Sn (4.14)

h B an An+1 2anlAn 2h

The map (4.12)—(4.14) is a discrete-time approximation of the lattice system (2.6). In order to
obtain the integrable discretization of the lattice system (2.6), we must choose proper modified
termsoy ,(h) andoy,, (h) such that equations (4.7)—(4.9) hold identically. However, we failed

in finding propero1,, (k) ando,,,, (k). Recently, by the singularity confinement method [25—
27], the bilinear form of the discrete-time relativistic Toda lattice equations was established and
the N-soliton solution was constructed explicitly by Maruebal in the form of the Casorati
determinant [28]. So we believe that the search for the bilinear form#/asaliton solutions

for the discrete-time general Toda-type lattice and integrable discretization of the lattice system
(2.6) are worth further future effort.
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